Exam Program Correctness, June 18th 2014, 9:00-12:00h.

- This exam consists of three problems. Problem 1 is worth 20 points, problem 2 is worth 30 points, and problem 3 is worth 40 points. You get 10 points for not misspelling your name and student number.
- Give complete annotations, and linear proofs. Use a pen. Do not use a pencil!
- The exam is a closed book exam. You are not allowed to use the reader, slides, notes, or any other material.
- Do not hand in scratch paper!

Problem 1 (20 pt).
(a) Prove the correctness of the following conditional command (where z, a, and n are variables of the type \mathbb{N}):

$$
\left\{z \cdot a^{2 \cdot(n \operatorname{div} 2)+n} \bmod _{2}=Z \wedge n \geq 0\right\}
$$

if $n \bmod 2=1$ then
$z:=z * a ;$
end;
$a:=a * a$;
$n:=n \operatorname{div} 2$;
$\left\{z \cdot a^{n}=Z \wedge n \geq 0\right\}$
(b) Prove the correctness of the following program fragment

```
var \(n, x, y, z: \mathbb{Z} ;\)
    \(\left\{P: n \geq 0 \wedge(x+y)^{n}=Z\right\}\)
\(z:=1\);
while \(n \neq 0\) do
        if \(n \bmod 2=1\) then
                \(z:=z *(x+y)\)
        end;
        \(x:=x * x+2 * x * y ;\)
        \(y:=y * y\);
        \(n:=n \operatorname{div} 2 ;\)
end;
        \(\{Q: z=Z\}\)
```

Problem $2(30 \mathrm{pt})$. Design and prove the correctness of a command S that satisfies

```
const n:\mathbb{N, a: array [0..n) of }\mathbb{Z};
var }x:\mathbb{Z}\mathrm{ ;
    {P: true }
S
    {Q:x=\Sigma(Max{a[j]|j:0\leqj\leqi}| |:0\leqi<n)}.
```

The time complexity of the command S must be linear in n. Start by defining (a) suitable helper function(s) and the corresponding recurrence(s). It is allowed to use the constants $-\infty$ and/or $+\infty$ in your program.

Problem 3 (40 pt). Given is a two-dimensional array a that is increasing in both indices. Consider the following specification:

```
const \(n, w: \mathbb{N}, a:\) array \([0 . . n)\) of \(\mathbb{N}\);
\(\operatorname{var} k: \mathbb{N}\);
    \(\{P: Z=\#\{(i, j) \mid i, j: 0 \leq i \leq j<n \wedge a[i, j]=w\}\}\)
\(S\)
    \(\{Q: k=Z\}\)
```

(a) Make a sketch in which you clearly indicate where the array is high, low, and how a contour line goes.
(b) Define a function $F(x, y)$ that can be used to compute Z. Determine the relevant recurrences for $F(x, y)$, including the base cases.
(c) Design a command S that has a linear time complexity in n. Prove the correctness of your solution.

